

C++, based on the C programming language, is an Object-Oriented Programming (OOP) language.
Unlike C, C++ is built on the concept of "objects" instead of using data and actions on data as the basis
for the program's logic. Using OOP, related data and routines are grouped into an object that then
relates to other objects in the program. These objects can represent all of the parts and functions of a
real entity or an abstract idea. C++ is a powerful language that is inherently useful for large-scale
projects.

This course broadens the skills of a C++ programmer by presenting an in-depth treatment of templates,
exceptions, memory management, advanced inheritance issues, disambiguation, adaptors, reference
counting, runtime type identification, and the standard template library. Group discussions and lab
exercises support the classroom lectures.

Course Objectives:
• Write programs using the C++ template facility
• Distinguish between the different forms of inheritance
• Identify the correct C++ feature to implement a particular design specification
• Implement multiple inheritance when necessary
• Write programs which utilize a robust set of data structure classes
• Understand programs which use function pointers in a wide variety of problems
• Use the exception handling capability of modern C++ compilers
• Use the algorithms, containers, and iterators from the new Standard Template Library
• Understand the complex set of rules which govern C++'s disambiguation algorithm
• Write programs that use the advanced I/O features from the iostreams library

Audience: Individuals interested in enhancing their knowledge of the C++ language.

Prerequisites: C++ Programming

Number of Days: 4 days

Advanced C++ Programming

1. Course Introduction
 Course Objectives
 Overview
 Suggested References
2. What You Should Already Know-a

Review
 Rationale for a new programming

language
 The language of Object Orientation
 A typical C++ class
 Issues regarding member functions vs.

non-member functions
 friend Or non friend
 functions - returning references

 Relationships
 Initialization lists
 Inheritance in C++
 Access Levels
 Simple C++ I/O
 The uses of const
3. Parameterized Types -

Templates
 Templates
 Overloading functions
 Template functions
 Specializing a template function
 Disambiguation under

specialization

© Batky-Howell, LLC 1
Advanced C++ Programming

 Template classes
 Instantiating a template class object
 Rules for template classes
 Non member function w/ a template

argument
 Friends of template classes
 Templates with multiple type parameters
 Comments regarding templates
4. Relationships of All Kinds
 Uses of Member Initialization Lists
 Member initialization lists under

composition
 Initialization lists under inheritance
 Initialization lists w/ Multiple

Inheritance (MI)
 Initialization with MI and composition
 Efficiency
 operator= and composition
 Constructors and composition
 What is not inherited?
 operator=, construction, and inheritance
 Public inheritance
 Virtual functions
 A shape class hierarchy
 Polymorphism
 Pure virtual functions
 Abstract base classes
 Private inheritance
 Using relationships
 Associations
5. Multiple Inheritance
 Multiple inheritance
 Ambiguities
 virtual base classes
 The Dominance Rule
 Member initialization lists
 operator=
6. Data Structures
 Introduction
 A simple List
 Layering type safe classes upon List
 A template List class
 Iterators
 A template iterator
 Stack and Queue classes
 Templates and Inheritance

7. Function Pointers
 Why have function pointers?
 Passing functions as arguments
 Registering functions
 Function pointers in C++
 Callback functions
 A class with a callback object
 Registration of exceptions

handlers
8. Exceptions
 What are exceptions?
 Traditional approaches to error

handling
 try, catch, and throw
 A simple exception handler
 Multiple catch blocks
 The exception specification list
 Rethrowing an exception
 Cleanup
 Exception matching
 Inheritance and exceptions
 Resource allocation
 Constructors and exceptions
 Destructors and exceptions
 Catch by reference
 Standard exceptions
9. Standard Template Library
 The Standard Template Library
 Design goals
 STL Components
 Iterators
 Example: vector
 Example: list
 Example: set
 Example: map
 Example: find
 Example: merge
 Example: accumulate
 Function objects
 Adaptors
10. Disambiguation
 Conversion
 int Conversions
 float + double Conversions
 Arithmetic and pointer

conversions

© Batky-Howell, LLC 2
Advanced C++ Programming

 Inheritance based conversion
 Overloaded functions
 Exact match
 Match with promotion
 Match with standard conversion
 User defined conversion
 Constructors as conversion operators
 Ambiguities
11. File I/O
 Introduction
 Manipulators
 Writing your own manipulators
 Overloading the I/O operators
 Disk files
 Reading and writing objects
 Internal transmission of data
 A spell checker
 Handling Streams in the constructor and

destructor
 Treating a file as an array
12. Miscellaneous Topics
 Namespaces
 Use counts
 Reference counts
 RTTI
 Casts
 Having a limited number of objects
 Smart pointers

© Batky-Howell, LLC 3
Advanced C++ Programming

