

This course provides in-depth training for software developers on UNIX system programming facilities.
With an emphasis on writing portable programs using industry standards such as POSIX, X/Open, and
the SUS, programming interfaces to several system services are explained in detail. Students will write
and modify many C programs in this class, using system calls and library routines. This course can also
be delivered on Linux.

Course Objectives:
• Develop the programming skills required to write applications that run on the UNIX

operating system.
• Write portable applications using UNIX standards.
• Develop the basic skills required to write network programs using the Berkeley Sockets

interface to the TCP/IP protocols.

Audience: Application developers who will be writing advanced programs on UNIX.

Prerequisites: Fundamentals of UNIX and C Programming. Strong C programming skills are required
for this course.

Number of Days: 4 days

Advanced UNIX
Programming

1. Course Introduction
 Course Objectives
 Overview
 Suggested References
2. UNIX Standards
 Brief History of UNIX
 AT&T and Berkeley UNIX Systems
 Major Vendors
 What is a Standard?
 What is POSIX?
 Other Industry Specs and Standards
 Library vs. System-Level Functions
3. Files and Directories
 Basic File Types
 File Descriptors
 The open() and creat() Functions
 Keeping Track of Open Files
 File Table Entries
 The v-node Structure
 The fcntl() Function
 The fcntl() Function – with F_DUPFD

Command
 File Attributes
 The access() Function

 link(), unlink(), remove(), and
rename() Functions

 Functions to Create, Remove,
and Read Directories

4. System I/O
 Standard I/O vs system I/O
 System I/O Calls
 File and Record Locking
5. Processes
 What is a Process?
 Process Creation and

Termination
 Process Memory Layout
 Dynamic Memory Allocation
 Accessing Environment

Variables
 Real and Effective User IDs
6. Process Management
 The Difference Between

Programs and Processes
 The fork() System Function
 Parent and Child
 The exec System Functions
 Current Image and New Image

© Batky-Howell, LLC 1
Advanced UNIX Programming

 The wait() Functions
 The waitpid() Function
 Interpreter files and exec
7. Basic Interprocess Communication:

Pipes
 Interprocess Communication
 Pipes
 FIFOs
8. Signals
 What is a Signal?
 Types of Signals
 Signal Actions
 Blocking Signals from Delivery
 The sigaction() function
 Signal Sets and Operations
 Sending a Signal to Another Process
 Blocking Signals with sigprocmask()
 Scheduling and Waiting for Signals
 Restarting System Calls (SVR4)
 Signals and Reentrancy
9. Introduction to Pthreads
 Processes and Threads
 Creating Threads
 Multitasking
 Overview of Thread Architectures
 Processes Versus Threads
 The Pthreads API
 Thread Termination
 Joining Threads
 Detaching Threads
 Passing Arguments to Threads
10. Pthreads Synchronization
 The Sharing Problem
 Mutexes
 Creating and Initializing Mutexes
 Using Mutexes
 Additional Synchronization Requirement
 Using Condition Variables
11. Overview of Client/Server

Programming with Berkeley
Sockets

 Designing Applications for a Distributed
Environment

 Clients and Servers
 Ports and Services

 Connectionless vs. Connection-
Oriented Servers

 Stateless vs. Stateful Servers
 Concurrency Issues
12. The Berkeley Sockets API
 Berkeley Sockets
 Data Structures of the Sockets

API
 Socket System Calls
 Socket Utility Functions
13. TCP Client Design
 Algorithms instead of Details
 Client Architecture
 Generic Client/Server Model –

TCP
 The TCP Client Algorithm
14. TCP Server Design
 General Concepts
 Iterative Servers
 Concurrent Servers
 Performance Consideration
 An Iterative Server Design
 A Concurrent Server Design
15. System V Interprocess

Communication
 System V IPC
 Elements Common to msg, shm,

and sem Facilities
 The Three System V IPC

Facilities
 IPC via Message Queues
 IPC via Shared Memory
 Coordinating the Use of Shared

Memory Segments
 Semaphore Sets - semget()
 Semaphore Sets – semctl()
 Semaphore Sets – the semop()

call
 Shared Memory Coordination

Using Semaphores
 Commands for IPC Facility

Handling - ipcs and
ipcrm

16. Appendix A – Date and Time
Functions

 Overview

© Batky-Howell, LLC 2
Advanced UNIX Programming

 Time Representations
 Decoding Calendar Time
 Shorthand Functions – asctime() and

ctime()
 Formatting Date and Time Strings
 Process Times
 The Difference Between clock() and

times()
 Berkeley High Resolution Timer
17. Appendix B – Standard I/O
 Standard I/O Calls to manipulate streams
 Standard I/O Calls which perform

character I/O
 Standard I/O Calls which perform string

I/O
 Standard I/O Calls Which Perform

Formatted I/O
 Standard I/O Calls Which Perform

Binary I/O

© Batky-Howell, LLC 3
Advanced UNIX Programming

