

Shell programs, or scripts, are the means by which the Linux shell is used as a programming language.
Linux commands and shell language control constructs are entered into a file by the programmer, then
the file is executed as a command and interpreted just as if the commands had been typed on the shell
command line. Thus, shell scripts provide a way to automate commonly executed groups of commands
– but shell scripts can do much more than this. Although many simple tasks are automated with small
scripts, large scripts hundreds of lines long are very common. These larger scripts are written by system
administrators, database administrators, testers, utility programmers, and others to create utilities that are
largely composed of powerful Linux commands, such as find, sed, awk, and hundreds of others.

In this course, students learn to read, write, and debug bash shell scripts. Back at work they can greatly
increase productivity by automating repetitive tasks (for themselves or others), and by creating
specifically tailored utilities designed to meet their precise needs. Students will read and write many
bash scripts in this class, which will additionally increase their overall Linux knowledge and skills.

Course Objectives:
• Explain the purpose of shell programs.
• Recognize applications for shell programs.
• Design and write shell programs of moderate complexity, using variables, special variables,

flow control mechanisms, operators, arithmetic, and functions.
• Debug shell programs using several different debugging techniques.
• Write “real-time” shell scripts that respond to and handle asynchronous events with the trap

command.
• Manage multiple concurrent processes to achieve higher utilization of UNIX.

Audience: Linux or UNIX users, programmers, and system administrators.

Prerequisites: Fundamentals of Linux or Fundamentals of UNIX

Number of Days: 3 days

bash Programming

1. Course Introduction
 Course Objectives
 Overview
 Suggested References
2. UNIX Processes
 What is a Process?
 Process Structure
 The ps Utility
 Options to the ps Utility
 Background Commands (&)
 Killing Background Processes
 Redirecting the Standard Error
3. Getting Started
 What is a Shell?

 Running Scripts
 Specifying the Script’s

Interpreter
 The PATH Environment

Variable
 Sub-shells
4. Variables
 Shell Variables
 The read Command
 The export Command
 The Shell Environment
 Parameter Expansion
 Command Substitution
5. The Login Process

© Batky-Howell, LLC 1
bash Programming

 The Login Process
 The System Profile Script
 Your .bash_profile Script
 The . Command
6. Conditional Statements
 The Exit Status of Commands
 Command Line Examples
 The test Command
 The if-then-else Construct
 The elif Construct
 case Statements
7. Loops
 The for Loop
 The while Loop
 break and continue
 Reading Lines From Files
 Using Arrays with Loops
8. Special Variables
 $$ - PID of Shell
 Command-Line Arguments
 $# - Number of Arguments
 $* - All Arguments
 The shift Command
 The set Command
 Getting Options
9. Quoting Mechanisms
 Single vs. Double Quotes
 What is a Here Document?
 Using a Here Document
 Here Document Quoting
 Ignoring Leading Tabs
10. Functions
 Shell Functions
 Passing Arguments to Functions
 Returning Values from Functions
 Function Declarations
11. Advanced Programming
 Shell Arithmetic
 The select Statement
 Terminal Independence in Scripts
 The eval Command
12. Debugging Techniques
 Using echo
 Using Standard Error
 Script Tracing
 Options for Debugging

 Conditional Debugging

© Batky-Howell, LLC 2
bash Programming

