

The C Programming Language was originally created to write the UNIX operating system. It quickly
turned into a multi-purpose language used by all types of programmers for a wide variety of
applications. C is a small language that can be learned quickly. It is highly-structured and modular,
supporting both small and large programs equally well.

Batky-Howell’s C Programming course has been introducing students to the power and flexibility of this
language for years. You will develop the ability to design and write programs in the ANSI Standard C
programming language. Concepts such as arrays, functions, control flow, pointers, and many others will
quickly prepare you to successfully code your own C applications.

Course Objectives:
• Describe the basic elements of C.
• Write C programs using all the major features of the language.
• Define and use C datatypes.
• Write variable declarations for programs.
• Apply the unique notations that C uses for assignments, incrementing, and decrementing.
• Control the flow of program execution.
• Write modular programs consisting of functions.
• Describe the purpose and functioning of a preprocessor.
• Define the relationship between arrays and pointers.
• Use structure variables for data storage and manipulation.

Audience: Programmers new to the ANSI C language.

Prerequisites: Programming skill in a language such as Pascal, COBOL, BASIC, or assembler.

Number of Days: 5 days

C Programming

1. Course Introduction
 Course Objectives
 Overview
 Suggested References
2. Introduction to C
 What is C ?
 Features of C
 Why Program in C ?
 History of C
 Current Status and Future
3. An Overview of C
 The First Program (hello.c)
 How to Compile and Run a C Program
 An Arithmetic Program (roof.c)
 Execution Flow Control (mph.c)
 The for Loop

 The for Loop - Diagram
 Character I/O
 A File Copier Program (cp2.c)
 A Character Counter (wc2.c)
 A Look at Arrays
 Stock Values (stock1.c)
 The char Data Type
 Strings (Character Arrays)
 A String Copy Program

(stringcp.c)
 A Look at Functions
 A Functional Program (func1.c)
 A Review of printf()
4. Data Types and Variables
 Fundamental Data Types
 Data Type Values and Sizes

© Batky-Howell, LLC 1
C Programming

 Variable Declarations
 Variable Names
 Constants
 Character Constants
 String Constants
5. Operators and Expressions
 What are Expressions?
 Arithmetic Operators
 Relational Operators
 Assignment Operator
 Expressions Have Resulting Values
 True and False
 Logical Operators
 Increment and Decrement Operators

(++ and --)
 Increment and Decrement Operators:

Examples
 'Operate-Assign' Operators (+=, *=, ...)
 Conditional Expression
 Operator Precedence
 Precedence and Order of Evaluation
 Evaluation of Logical Operators
 Type Conversions
 The Cast Operator
 Bitwise Logical Operators
6. Control Flow
 Statements
 if - else
 if() - else if()
 switch()
 while()
 do - while()
 for()
 The for Loop - Diagram
 Example: for() Loop
 Another Example: for() Loop
 The break Statement
 The continue Statement
7. Functions
 What is a Function?
 Example: findbig3()
 Why Use Functions?
 Anatomy of a Function
 Example: find_big_int()
 Arguments Passed by Value
 Addresses of Arguments Can Be Passed

 A Picture of Addresses and
Values

 When to Use the Return
Statement

 Returning Non-Integer Values
 Functions in Multiple Source

Files
 A Simple make File
 The Concept of Variable Scope
 Automatic Variables
 Global (External) Variables
 Static Variables
 External Static Variables
8. The C Preprocessor
 Symbolic Constants
 Macro Substitution
 File Inclusion
9. Pointers and Arrays
 What is a Pointer?
 Pointer Operators
 Example: Pointers
 Why Use Pointers?
 Arrays
 Arrays (a Picture)
 The & Operator
 Pointers and Arrays
 Pointer Arithmetic
 Pointer Arithmetic (a Picture)
 Arrays and Pointers
 Array Names are Constant

Pointers
 Passing Arrays to Functions
 Initializing Arrays
10. Advanced Pointers
 Pointer Initialization
 Command-Line Arguments
 Strings and Character Pointers
 Arrays of Pointers
 Command-Line Arguments
 Access Through Pointers
 Functions and Pointers
 Example: Functions and Pointers
11. Structures
 Structures
 Comparison of Structures and

Arrays

© Batky-Howell, LLC 2
C Programming

 Structure Definitions
 Structure Declarations
 Structure Parameter Passing by

Reference
 Pointers to Structures
 Structure Parameter Passing Again
 Arrays of Structures
 The malloc Routine
12. Appendix - File I/O in C
 File Streams
 Predefined Streams
 The fprintf Function
 The fscanf Function
 fscanf() Examples
 The fputs and fgets Functions
 The fwrite and fread Functions
 System I/O

© Batky-Howell, LLC 3
C Programming

