

Object-Oriented Analysis and Design (OOA&D) is a process of identifying the needs of a software
project and laying out specifications in various models. The Unified Process, in which four iterative
phases are used to hone the architecture and build the system, is the framework for many OOA&D
endeavors. Each phase can consist of models from different perspectives. These models are
documented using the Unified Modeling Language, an industry-standard language for visualizing,
specifying, and documenting the architecture of the system.

In this course, students learn how to identify and design objects, classes, and their relationships to each
other, which includes links, associations, and inheritance. A strong emphasis is placed on UML diagram
notation for use cases, class and object representation, links and associations, and object messages. This
course utilizes UML 2.0 notation.

Course Objectives:
• Apply the principals and practices of Object-Oriented Analysis and Design.
• Use modeling in analysis and design, particularly in visual modeling.
• Use the Unified Modeling Language to create visual models of business problems and

software solutions.
• Design programs with objects.
• Create more flexible and more maintainable software systems at lower costs.

Audience: Analysts, designers, and programmers responsible for applying OO techniques in their
software engineering projects.

Prerequisites: Familiarity with structured techniques such as functional decomposition is helpful.

Number of Days: 5 days

Object-Oriented Analysis & Design
Using the Unified Modeling Language

1. Course Introduction
 Course Objectives
 Overview
 Suggested References
2. Introduction to Analysis and Design
 Why is Programming Hard?
 The Tasks of Software Development
 Modules
 Models
 Modeling
 Perspective
 Objects
 Change
 New Paradigms
3. Objects
 Encapsulation
 Abstraction

 Objects
 Classes
 Responsibilities
 Attributes
 Composite Classes
 Operations and Methods
 Visibility
 Inheritance
 Inheritance Example
 Protected and Package Visibility
 Scope
 Class Scope
4. Advanced Objects
 Constructors & Destructors
 Instance Creation
 Abstract Classes
 Polymorphism

© Batky-Howell, LLC 1
Object-Oriented Analysis & Design

Using the Unified Modeling Language

 Polymorphism Example
 Multiple Inheritance
 Solving Multiple Inheritance Problems
 Interfaces
 Interfaces with Ball and Socket Notation
 Templates
5. Classes and Their Relationships
 Class Models
 Associations
 Multiplicity
 Qualified Associations
 Roles
 Association Classes
 Composition and Aggregation
 Dependencies
 Using Class Models
6. Sequence Diagrams
 Sequence Diagrams
 Interaction Frames
 Decisions
 Loops
 Creating and Destroying Objects
 Activation
 Synchronous & Asynchronous
 The Objects Drive the Interactions
 Evaluating Sequence Diagrams
 Using Sequence Diagrams
7. Communication Diagrams
 Communication Diagrams
 Communication and Class Diagrams
 Evaluating Communication Diagrams
 Using Communication Diagrams
8. State Machine Diagrams
 What is State?
 State Notation
 Transitions and Guards
 Registers and Actions
 More Actions
 Internal Transitions
 Superstates and Substates
 Concurrent States
 Using State Machines
 Implementation
9. Activity Diagrams
 Activity Notation
 Decisions and Merges

 Forks and Joins
 Drilling Down
 Iteration
 Partitions
 Signals
 Parameters and Pins
 Expansion Regions
 Using Activity Diagrams
10. Package, Component, and

Deployment Diagrams
 Modeling Groups of Elements –

Package Diagrams
 Visibility and Importing
 Structural Diagrams
 Components and Interfaces
 Deployment Diagram
 Composite Structure Diagrams
 Timing Diagrams
 Interaction Overview Diagrams
11. Use Cases
 Use Cases
 Use Case Diagram Components
 Use Case Diagram
 Actor Generalization
 Include
 Extend
 Specialize
 Other Systems
 Narrative
 Template for Use Case Narrative
 Using Use Cases
12. Process
 Process
 Risk Management
 Test
 Reviews
 Refactoring
 History
 The Unified Process
 Agile Processes
13. The Project
 Inception
 Elaboration
 Elaboration II
 Construction Iterations

© Batky-Howell, LLC 2
Object-Oriented Analysis & Design

Using the Unified Modeling Language

 Construction Iterations - The Other Stuff
14. Domain Analysis
 Top View – The Domain Perspective
 Data Dictionary
 Finding the Objects
 Responsibilities, Collaborators, and

Attributes
 CRC Cards
 Class Models
 Use Case Models
 Other Models
 Judging the Domain Model
15. Requirements and Specification
 The Goals
 Understand the Problem
 Specify a Solution
 Prototyping
 The Complex User
 Other Models
 Judging the Requirements Model
16. Design of Objects
 Design
 Factoring
 Design of Software Objects
 Features
 Methods
 Cohesion of Objects
 Coupling between Objects
 Coupling and Visibility
 Inheritance
17. System Design
 Design
 A Few Rules
 Object Creation
 Class Models
 Interaction Diagrams
 Printing the Catalog
 Printing the Catalog II
 Printing the Catalog III
 Object Links
 Associations
18. Refactoring
 Refactoring
 Clues and Cues
 How to Refactor
 A Few Refactoring Patterns

19. Appendix A – UML Syntax
20. Appendix B – Design by

Contract
 Contracts
 Enforcing Contracts
 Inheritance and Contracts
21. Appendix C – University

Summary
22. Appendix D – Implementations

in C++, Java, and C#

© Batky-Howell, LLC 3
Object-Oriented Analysis & Design

Using the Unified Modeling Language

