

Object-Oriented Analysis and Design (OOAD) is a process of identifying the needs of a software project
and then laying out those specifications in a readable model. Design Patterns are an extension of these
skills that create more maintainable and robust code. Using well-known, proven patterns that either
stand-alone or build from one to the next, designers are able to further define the specifications of the
project, optimizing quality and time spent on developing the project by programmers.

This advanced Object-Oriented course provides software architects and designers with skills to create
high quality object-oriented designs exhibiting improved flexibility, reduced maintenance costs, and
with increased understanding of the resulting code. Participants learn more than 30 object-oriented
patterns, including the 23 micro-architectures in “Design Patterns: Elements of Reusable Object-
Oriented Software”, by Gamma, Helm, Johnson, and Vlissides (the gang-of-four, or GoF book).
Application examples and code snippets are provided to illustrate the patterns and the rationale for using
that pattern in a given situation.

Course Objectives:
• Improve Software Architecture.
• Build Design Pattern Vocabulary.
• Be able to discuss trade-offs in applying various design patterns.
• Gain concepts and tools for writing better object-oriented code.
• Gain concepts for better documenting object-oriented code.
• Review relevant UML notation.

Audience: Software architects and designers requiring advanced design skills.

Prerequisites: Object-Oriented Analysis & Design with the Unified Modeling Language or equivalent
experience. At least 6 months experience programming with an object-oriented programming language.

Number of Days: 4 days

Comprehensive Design
Patterns

1. Course Introduction
 Course Objectives
 Overview
 Suggested References
2. Design Pattern Overview
 Objectives in Software Design/Module

Design
 Overview of Patterns
 Qualities of a Pattern
 Pattern Systems
 Heuristics vs. Patterns
3. Principles of Object-Oriented Design
 Overview of Principles
 Single-Responsibility Principle (SRP)
 Open-Closed Principle (OCP)

 Tell vs. Ask
 Command/Query Separation (CQS)
 Composed Method
 Combined Method
 Liskov Substitution Principle (LSP)
 Dependency Inversion Principle (DIP)
 Interface Segregation Principle (ISP)
 Law of Demeter
4. Principles of Package Architecture
 Package Cohesion Principles
 Package Coupling Principles
 Martin Package Metrics
5. Basic Object-Oriented Design

Patterns
 Delegation vs. Inheritance

© Batky-Howell, LLC 1
Comprehensive Design Patterns

 Interface
 Immutable
 Null Object
 Marker Interface
 General Responsibility Assignment

Software Patterns
6. Catalog of GoF Patterns
 Overview of GoF Patterns
 Introduction to Creation Patterns
 Factory Method
 Abstract Factory
 Builder
 Prototype
 Singleton
 Introduction to Structural Patterns
 Adapter
 Decorator
 Proxy
 Façade
 Composite
 Flyweight
 Bridge
 Introduction to Behavioral Patterns
 Chain of Responsibility
 Iterator
 Strategy
 Template Method
 Mediator
 Observer
 Memento
 Command
 State
 Visitor
 Interpreter
7. Other Micro-Architecture and System

Patterns
 Object Pool
 Worker Thread
 Dynamic Linkage
 Cache Management
 Type Object
 Extension Object
 Smart Pointer (C++)
 Session
 Transaction
8. Concurrency Patterns

 Single Threaded Execution
 Guarded Suspension
 Balking
 Scheduler
 Read/Write Lock
 Producer/Consumer
 Two-Phase Termination
 Double-Checked Locking
9. Patterns-Oriented Software

Architecture
 Systems of Patterns
 Architectural Patterns
 Layers Architecture
 Pipes & Filters Architecture
 Blackboard Architecture
 Broker
 Model-View-Controller
 Presentation-Abstraction-Control
 Reflection
 Microkernel
 Catalog of J2EE Patterns
 J2EE Pattern Relationships
10. Selected Process Patterns (from PLoP)
 The Selfish Class
 Patterns for Evolving Frameworks
 Patterns for Designing in Teams
 Patterns for System Testing
11. Selected Anti-Patterns
 Stovepipe System
 Stovepipe Enterprise
 Reinvent the Wheel
 Golden Hammer
 Death by Planning
 Death March Projects
 Additional Management Anti-Patterns
12. Patterns Summary
13. Appendix A – UML Review
14. Appendix B – C# Code Examples for

GoF
15. Appendix C – Maze Game Java Code

16. Appendix D – Possible Solutions for

Exercises
17. Appendix E – Diagram Worksheets

© Batky-Howell, LLC 2
Comprehensive Design Patterns

